科學 (Science) 期刊所發表的一份研究報告中,提到可能被用於破壞機器學習 (Machine learning,ML) 系統的進階技巧警告。這份研究詳細說明如何建構並部署對抗式攻擊 (也就是用來破壞 ML 系統的技巧),於機器學習和人工智慧 (AI) 技術使用率日益提高的醫療產業中。在示範中,有一個良性的皮膚病變影像,影像中有一小部分的像素經過修改,結果誤導了診斷的 AI 系統,將其辨別為惡性病變。

機器學習和 AI 系統遭到對抗式攻擊( adversarial attacks )入侵的例子,並不只侷限於醫療產業的應用。舉例來說,原應協助保護企業資源與資料的機器學習系統,也可能遭到這類的攻擊。
[請參閱:Clustering Malicious Network Flows With Machine Learning]
發生在安全系統的對抗式攻擊
Dark Reading 近期發表的一篇文章中,點出了網路罪犯可能用來顛覆企業資安防衛的攻擊方法。例如,攻擊者可能利用使用機器學習的自動化滲透測試工具深度滲透 (Deep Exploit) 來嘗試滲透組織,而且只要 20 至 30 秒就能找出企業防衛中的資安漏洞。這種攻擊方法如此快速,是因為其利用機器學習模型,快速吸收並分析資料,同時產生最適合用於下一個攻擊階段的結果。
繼續閱讀