換臉、控制嘴唇,植入假造的音源檔,流傳在網路上萬個造假影片,用 #Deepfake #深偽技術 製造的。如果你的老闆在 Youtube 上有很多影音,得當心被利用了
這項技術已被網路犯罪集團用來圖利,已出現的案例是模仿大老闆的聲音,語調、斷句及腔調,進行語音網路釣魚,騙走 24.3 萬美金。😰
本文說明幾種運用機器學習技術的駭客概念驗證與真實攻擊案例來說明當前機器學習在網路威脅領域的應用現況與未來可能性。
資安廠商正運用機器學習(Machine learning,ML)技術來改善其威脅偵測能力,協助企業強化惡意程式、漏洞攻擊、網路釣魚郵件、甚至未知威脅的防禦能力。Capgemini Research Institute 針對機器學習在資安上的應用做了一份研究,他們發現在所有受訪的 10 個國家 850 位資深高階經理當中,約有 20% 在 2019 年之前便已開始運用機器學習技術,另有 60% 將在 2019 年底前開始採用。
機器學習在網路資安領域的應用已證明相當有效,更別說在其他眾多產業也獲得了相當的成果。不過這項技術卻也存在著被犯罪集團吸收利用的風險。儘管機器學習變成大規模犯罪武器的可能性似乎還很遙遠,但有關這方面的研究,尤其是利Deepfake 深度偽造技術來從事勒索或散布假訊息,近來在 IT 業界與一般大眾之間已掀起了一波熱議。
為了進一步說明當前機器學習在網路威脅領域的應用現況與未來可能性,以下說明近幾年來一些運用機器學習技術的駭客概念驗證與真實攻擊案例:
繼續閱讀