網路犯罪集團隨時都在尋找新的策略來擊敗資安防護產品/防毒軟體以提高其成功機率。
隨著惡意檔案變形與包裝技巧日益普遍,傳統採用特徵比對技術的用戶端 (端點) 防護,已無法「獨力」面對威脅,所以新的跨世代防護方法應運而生。除此之外,後台系統在分析今日惡意程式時也顯得力不從心,因為不論是靜態或動態分析技巧,當遇到的惡意程式經過複雜的加密編碼或具備沙盒反制能力時,將無法發揮作用。再者,新的威脅數量越來越多,需要一套更快的偵測系統才能妥善保護全球的使用者。
為了滿足這項需求,趨勢科技開發了一套系統來克服靜態及動態偵測技巧的困境,並且即時偵測最新威脅。我們結合了機器學習和圖像推理,只需不到一秒的時間就能分辨軟體下載的好壞並加以分類。
圖 1:偵測架構示意圖。
每個受保護的端點都會執行一個下載辨識代理程式 (Download Identification Agent,簡稱 DIA),用來偵測新的軟體下載。代理程式將負責蒐集下載相關情境資訊,將資訊傳送至趨勢科技的分類系統 (稱之為「惡意程式下載偵測系統」,簡稱 MDD)。接著,代理程式暫時將下載的檔案隔離,直到分類結果出爐為止。所謂的情境資訊包括下載的用戶端與端點組態,但不包含被下載的檔案本身。
圖 2:檔案下載分類流程示意圖。 繼續閱讀